

Saturn's upper atmospheric density profile from Doppler data during Cassini proximal orbits, with exoplanet perspective

Mau C. Wong and Dylan R. Boone

	Pri	m e	Miss	i o n	Equino	x Mission	S	o I s	t i c		M i s		o n
Year of Tour	1 '04-'05	2 '05-'06	3 '06-'07	4 '07-'08	5 '08-'09	6 '09-'10	7 '10-'11	8 '11-'12	9 '12-'13	10 13-'14	11 '14-'15	12 '15-'16	13 '16-'17
Orbits	11	15	22	27	39	21	16	19	25	12	12	20	56
Titan *Huygens	• •	• •	• •	• •	•••	• •	• •	• •	• •	• •	• •	• •	• •
	• •				• • •	• •		•	•		•	• •	Proximal
						•				•			
Enceladus	9 9	•		•	• •	• • •	• •	0 0 0 0 0 0				• •	
Other Icy Satellites (under 10,000 km)	≫ Phoebe	Tethys Hyperion Dione Telesto Rhea		●Rhea ■ lapetus ₩ Epimetheus		Mimas Rhea Helene Dione JG arc	Rhea Helene	Dione Dione Tethys Methone Telesto	Rhea		Dione Tethys	● Dione © Epimetheus ✓ G arc	EOM Sep 15, 2017

These orbits allow high precision measurements and/or useful constraints for:

- · High order moments of gravity and magnetic field
- Ring mass and particle distribution
- Internal structure
- Rotation rate
- In-situ sampling/detection of the upper atmosphere

With comparable data on Jupiter and Saturn:

- -> intrinsic differences between two giant planets
- -> a sense of what can be expected of extrasolar giant planets within the same stellar system (the reverse is also true: advance in exoplanet observations can lead to deeper understanding of the Jovian planets)

Relative Protosolar Abundances of Outer Planets

From Atreya et al. 2016

The Abundance, Composition, and Loss Process of these gas giants can provide useful guidance for the understanding of their formation and evolution

Abundance: Using unique, independent navigation data to estimate the density of Saturn's upper atmosphere

Loss Process: Atmospheric escape modeling that is applicable to exoplanetary atmospheres

Cassini's Final Plunge:

- Ballistic trajectory, final five Saturn periapses flying between rings and atmosphere
- Final untargeted, distant flyby of Titan places spacecraft on impacting trajectory
- Plunge into atmosphere with High-Gain Antenna on Earth-point
- Collect Doppler data until drag torques antenna off Earth
- Line of sight velocity change information used to fit correction to Saturn atmospheric density profile
- Only chance for navigation team to directly investigate Saturn atmosphere
- One of the Cassini Mission's final science investigations

Comparison to results from other sources

- Error bars plotted as +/- 1σ
- Predicted atmosphere based on data from last five Saturn revs, scaled up from nominal project atmosphere model
- INMS counts converted to mass density assuming H2 atmosphere

Boone et al, 2018

Escape from Transiting Exoplanets Atmospheres

Driven by *heating* of upper atmosphere by UV/EUV or X-rays

Thermal and Non-thermal Escapes

- Thermal
 - Jeans escape (evaporation)
 - Hydrodynamic blow-off (bulk fluid flow)
- Non-thermal
 - Dissociative recombination: $A_2^+ + e \rightarrow A^* + A^* + \Delta E$
 - Photodissociation: $A_2 + v \rightarrow A^* + A^* + \Delta E$
 - Charge exchange: $A^+ + B^* \rightarrow A + B^+$
 - Atmospheric sputtering: A⁺ + B → A⁺ + B^{*}

Fluid Equations & Escape

e.g., solve 1D radial equations: Jeans parameter: $\lambda = U/kT$

$$\begin{split} &\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\rho v)=0\\ &\frac{\partial}{\partial r}\left(\frac{1}{2}v^2\right)+\frac{1}{\rho}\frac{\partial p}{\partial r}+\frac{GM}{r^2}=0\\ &\frac{1}{r^2}\frac{\partial}{\partial r}\left[r^2\left\{\rho v\left(\frac{1}{2}v^2+\tilde{c}_pT+\frac{\mathsf{U}}{s}\right)-\kappa\frac{\partial T}{\partial r}\right\}\right]=\frac{\mathsf{Q}}{s} \end{split}$$

Given n_o , T_o at lower boundary r_o & q (heating + radiative cooling)

still need upper boundary conditions

collisional → collisionless

Typically Assume

a sonic point (blow-off): $2 \text{ m c}_s^2 \cong U(r_s)$

If conduction is inefficient

Integrated energy eq. $\rightarrow \phi_{es} \sim Q_{net} / U(r_{UV})$

or

Jeans escape (modified Jeans)

Test Hydrodynamic Models of Escape

Molecular Kinetic Simulations

Direct Simulation Monte Carlo (DSMC) (e.g. Bird 1994)

Equivalent to solving Boltzmann equation for a gas

Simulate atmosphere using representive molecules with weights Track molecules in gravity field subject to collisions & heating MC choice of collision outcomes: cross sections

Gas properties constructed from density & speed distributions

Kn = Mean free path for collision/length scale Kn < ~ 0.1 Fluid equations

Exobase: Kn $ilde{\ }$ high prob. of molecular escape

Use Molecular Kinetic Model to:

Check the energy limited escape rate
Check validity of using Jeans bc
Find a criterion for when the atmosphere goes sonic
Test the sonic solutions

Scaled Escape Rate: Q = 0 for $r > r_o$

Volkov et al. 2011; Gruzinov 2011

Hydrodynamic → Jeans Escape occurs over *narrow* range of 7

Energy limited escape is reasonable

(with a major caveat: heating efficiency)

But flow not necessarily transonic

Blow-off (Transonic)
Hydrodynamic escape

T & n decrease rapidly Concentrations ~ const.

Evaporative (Subsonic) Jeans-like escape

T & n decrease more slowly Diffusive separation

Affects: Escape of trace species Interaction with external fields UV/EUV absorption radius

Transonic Threshold?

```
\begin{split} \varphi \sim & \ Q_{net} \ / \ U(r_a) \sim \ n_s \ c_s \ 4 \ \pi \ r_s^2 \\ & \ c_s^2 \sim U(r_s) / 2m \end{split} Kn(r_s) < Kn_m \sim < 0.1 \\ & \ Q_{net} > 4 \ \pi \ (2U(r_s) / m)^{1/2} \ U(r_a) \ \gamma \ / (\sigma_c \ Kn_m) \end{split} r_a \ is \ the \ mean \ absorption \ depth r_s \ is \ the \ sonic \ point \ ( > r_a) \end{split} Q_{net} = \epsilon \ 4\pi \ r_a^2 \ F_{UV/EUV} \ - \ radiative \ cooling \epsilon = \ 'heating' \ efficiency
```

Modeling Exoplanet Atmospheres

HD209458b

Similar loss rates with different thermal escape modeling

© 2018 California Institute of Technology. Government sponsorship acknowledged.